

DIVISION San Diego
MODEL \qquad

REPORTZP-48-35004 DATE 7 January 1949

TITLE

NOTES ON LONG RANGE

MISSILE DESIGN

SUEMITTED UNDER

\qquad

CHECKED BY \qquad

GROUP

REFERENCE \qquad

APPROVED BY \qquad
46
NO. OF PAGES
NO. OF DIAGRAMS \qquad

REVISIONS

	DATE	BY		CHANGE	PAGESAFFECTED

INTRODUCTICN AND CONTENTS

The present report is intended as a supplement to CVAC Report No. 48-35003 entitled: "Proposed Development Program on Rocket Type Missilos".

Some of the data of the above report are amplified or substantiated. In addition some further data are submitted underlying Convair's belief that the rocket engine is the power plant best suited for long-range bombardment missiles.

The topics discussed are:

1. Rockets vs Ramjets. A comprrison besed on RAND studies. page I
2. Comments on the state of Development of Ramjets for Long Range Missilespage η^{7}
3. Boosters for Long Range Ramjetspage 14
4. Proposed Mothod for Improving High Altitude Performance of R.M.I. 20,000 Pound Thrust Rocket
5. Warhead Skin Temperaturespage 21
6. Rocket Missile of 2000 Mile Range with6000 Pound Glide Type Warhead.page24

ROCKESS VS RAMJLIS

A COLPARISON BASED ON RAND SITUDIES

As A supplemont to previous comperisoms of Rockets with other type missiles submittod in GTAC Report $7 \mathrm{P}-48-35003, \quad 3 \mathrm{P}-6002-002$, Anel "Oonvels Roeket Missilegl, A weight and economic comprisison of Rockets vs Ramjets is presented herein based entirely on studies conducted under Project Rand.

It was assumed that identical propellants (Hydrazine-oxycen) were used in the rocket missile and in the ramjet booster. Any future improvement in rocket propellants would be reflected equally in both types of missile.

Rather than usine, the pres nt day diffusers the ramjet weights were besed on the use of the "reflected wave" type diffuser, which according to RAND is "bolieved to be attainabie in about five years". (Report RA-15072 page 21)

The gross weights vs range plotted in Figure 1 were taken from RAND plots: Figure 32A of Roport RA 15063 for the rockets and Figure 211 of Report RA 15070 for the ramjets.

In addition to the weight comparison a cost comparison was made for missiles of 3,000 and 5,000 miles range. The results are shown

The costs per pound used in these comparisons for airframe, power plant and guidance are based on CVAC experience to date in the guided missile field. The propellant costs represent current prices in carload lots with the exception of Hydrazine which is based on Project Rand estimates.

For lack of specific data the cost per pound of the ramjet power plant was assumed the same as that for alrframe, even though several of the power plant components - such as valves, pumns, injectors - are of the same degree of complication as those of the rocket power plant.

SECRET

GROSS WEIGHT COMPARISON OF

 ROCKETS AND RAM JETS(10,000 LB. WARHEAD)

2-STAGE HYDPAZIIE-OXYGEN ROCKET VS REFLECTED WAVE RAMTET WT TH HYDRAZINE-OXYGEN BOOSTER 5,000 MILE RANGE - 10,000 POUTID WAPHEAD

EIGURE 3

3000 MILE ROCKET -RAMJET ECONOMIC COMPARISON
2-Stace Hycrazine-oxyson Rocket vs. Roflected Wave
Ram jet with Hydrazine-Oxygen Booster
3000 IIlle Range - 10,000 Pound Warhead

COMCLUSION:

The above comparisons indicate that for ranges up to 4000 miles the Hydraxine-oxygen Rocket and the ramjet with "Reflected Wave" diffuser and Hydrazine-oxygen booster are closely comparable as to gross weights. Above 4000 miles the ramjet weight rapidly becomes excessive.

The economic comparison for 5000 mile range missiles indicates the cost of the ramjet missile to be 29 percent greater than the cost of the rocket missile. At a 3000 mile range the rocket missile cost exceeds the ramjet cost by 7 percent. Judging from the shape of the curves in Figure 1 this differential should be approximately the same at 2000 mile range.

It is interesting to compare the RAND values with values attainable in the not so distant future. The CVAC glide rocket described in this report and the $M X-770$ ramjet were selected to this end. Inasmuch as these missiles have different ranges and different payloads they were compared on the basis of cost per ton mile of payload.

	MISSILE		REFERENCE		COST IN \$/3
	RAND	5000 mile	page	4	39.0
	RAND	3000 mile	page	5	47.5
	CVAC	2000 mile	page	45	54.5
	RAND	5000 mile	page	4	50.1
	RAWD	3000 mile	paga		t
	MX-77	1000 mile	2P-48	03 p	261.3

These figures emphasize the fact that today the rockets are much closer than the ramjets to the ultimate perfection envisioned by RAND.

t. \triangle Itrapdecerion:

The selection of rocket propelled missiles over Ramjets for long range ground-to-ground application was based on considered study of the two methods of propulsion. As one of the principal Contractors in the Navy Bureau of Ordnance's Projoct Bumblebee, with responsibilities for missile fabrication and flight test, laboratory operation, and combustion research, Convair is peculiarly qualified to discuss the question of Ramjets. Coupled with two years of ramjet testing experience both at Convair operated Ordnance Aerophysics Laboratory at Daingerfield and the San Diego facility, Convair is fortunate in having developed and operated rocket pover plents as part of NX- $\delta 13$ and $M X-774$ programs. This combined experience is valuable in selecting the most suitable propulsion method for long-range ground-toground missiles.

Convair's choice of rockets for the long-range bombardment type missiles, in addition to other considerations, is based on sound knowledge of the status of development and the possibilities of various propulsion methods. A brief review of the ramjet art is presented to review the thinking that went into this selection. However, it must be emphasized that the conclusions drawn are based on the recuirements for long-range bombardment missiles only, and are not necessarlly true for all ramjet applications. Ramjets can be shown to be the optimum power plants for other type missiles.

The following comments are intended to show that ramjets in their present stage of development are unsuitable for long range propulsion, and that many of the problems which have been indicated by the Bumblebee activity will remain serious obstacles even after a solution for the anti-aircraft ramjet weapon has been reached.

1. Filght tests have confirmed the laboratory findings most satisfactorily. They seem to indicate that present articles will not operate in their design Mach number ranze at altitudes significantly higher than 35,000 feet.
2. Experience with the scaling problem clearly indicates the need for additional knowledge before extrapolations to arbitrary size are possible. Hrorefore, test facilitios not yot under construction ane a prereauisite to the development of lerge long-range pamjet-missiles. V
3. A failure of certain types of ramjet combustors to achieve ignition at launching Mach numbers has been discoverod. Solutions to this problem may place some limitations on the launching configuration of some missiles.
4. While methods ore under development for coolino the hot elaments of the lone-ranje ramjet, exverience has shown that some loss in efficiency will almost cortalnly be sustained to accomplish such cooling.
5. The problem of combustion control has proved to be considerable, and the necess ty is seen of always havine to carry air mass flow sensing octuipment and associated fino motering devices.

Rellability of all the zeneralized studies of ramjet rance made to date is thus brought into cuestion. The refinements in design nocessary to solve the foregoing problems and the flimht limitations so far experienced malse it unlikely that current paper solutions will be fulfilled in all respects and tiat tho time scale for the development of useful weapons from the standpoint of propulsion alone may be many years.

III. DEVELOPMENT STATUS:

The followine review of the reas int state of development of ramjets gives a measure of the difficulties that will have to be surmounted to arrive at a suitable dosifn for long-range ramjets.
A. Laboratory Tests: Observations diring laboratory tests of propulsicn units have lead to criteria of burner performance hased upon minimum flicht recuirements of thrust and maneuverability, and what arnear at the prosent laboratory stage to be practicable minima of burner performance. This laboratory experience in balancing combustion efficioncy, airfuel ratio range, practicability of manufacturing component parts, cost and time of development and general pmetical limitations has lead to a definition of a satisfactory burner as one which wlll attain a combustion efficioncy ereater than 75 percent over an air/fuel range of $2 / 1, \theta . E$, from $a / f=30 / 1$ to $a / f=15 / 1$. A typical humer performance cirve is presented in Figure 4 . It is further required that it burn readily available fuol and moot severe starting conditions. This standard of efficiency and burning range while satisfactory for short-range ground-to-air missiles is by no means adequate for a long range missile where combustion efficiency should be around 90 percent.

This laboratory experience has generally been limited to ramjet engines with a tailpipe exit diameter of twenty-four inches or less at burmer pressures preater than one atmosphere, while lone-range ramjots wfll cortainly be larger (it is genorally estimated that they will be from four to six feet in diameter) and also must operate with burner pressures less than sea level atmosphere.

CONSOLIDATED VULTEE ATRCRAFT CORPORATION Page 10

Figure 4 gombustion Elficimay Fa FuiralancelRatia For a Typical Lezaratory Bumer. Six- anch́ sqalo
Dostenad For $M_{0}=1.6 ;$ Maximum merust a
Stoichiomotric. (fax fmun Thrust For This:

SECRET

CONSOLIDATED VILTEE ATRCRAFT CORPORATION Page 11 San Diofo, California

Figure 15. Combust ton rificiency ts. Supsonio Diffusor Tnlet Stagnation Proseque for Four (4) Flightis of
 Normal \$hoct quse ehd pased on mict standard Atroank qre at Plish Altifude. (Numbors

PAGE Ǐ
REPORT NO ZP-4E-350 MODEL
DATE
B. Flipht Test: Excellent erreintirn ?etween flieht performance and laboratory performance of burners has been found; however, flight has been limited to the rerinn where it is possible to adeauately duplicate flifht onnditions in readily availablo test facilities. The nest examile of this limitation has been high altitude flight, where ramjets rave stonped burning at from 30,000 to 43,000 feet, which is also the reneral limitation of readily available test eauipment.

Flight test is, of course, far tno exnensive for burner development tests unless the burner is in a pretty advanced stage already.
C. Scale of Furner: Experience in scaling burners has clearly indicated that numerous laboratory tests are recuired of a new size of combustcr before satisfactory operatinn is gonroached. For examolo, whon a working 18 inch "Bumbloboe" bumer was scaled up to $2 i l$ inches, about twonty weeks of testing over a period of nine months was recuired before the 24 inch burner reached the standards of perfomance of the ik inch burner. This need for testing rocuires that considorable investment bo made in row facilitios, with an attendant long and expensive training, researci and development period before ramjets any larger than those currently being developed can be built.
D. Starting Problems: Starting tosts in laboratory facilitios cannot duplicate all the factors involved, so for tilis reason a sizeable percentrce of loss of valuable flicht missiles must be expected in launching failures. Several gich fallures of 18 inch Bumblebee flights occurred before a proner method of correlating laboratory and flight starting characteristics was found and a sclution to the problem devised. The two basic problems of starting are:

1. Imitinn under very high combustion velocities, unless a disposable restrictor is used.
2. Delay in develorine. full tirust, which may mean that the missile decelerates to below a spoed fron which it can accelerate under its own power.
E. Altitude Limitations: Altrough this limitaticn is mentioned under Section III, B, it represents such a complex of unsolved problems that snocial emphasis is recuired. The fact that combustor performance deteriorates ranidly at pressures less than one atmosphere presents a problem which is made doubly hard to solve vecause the basic factors causing this behavior have not been aderuately determined. Figure 5 shows the tendency of combustion efficiency to decline with reduced pressure even at pressures erentor tian ono atmosphere. Research and developinent of this phase has been severoly retarded by lack of test facilities leavine the development of a high altitude propulsion init several years away.
F. Control Frollems: Fuel flow in a ramjet is, of course, a function of flight velocity and altitude reouiring that sensitive air and fuel measuring and motoring dovices be developed. The development of such enntrols has presonted a considerable problem in the past, and will become even more involved in the future as ramjets have to operate at a wider range of altitudes.

BOOSTERS FOR LONG PANG\% MANJENS

Ramjot efficiencies necessm: t. male lone monea nosithle con only be achioved aroxnd Nach numbers of the order of 3 .

Furthemore these effjciancies renuire the usa of diffusers with poor "off design" characteristics.

A self acclerating ramjet would therefore entail the extreme compliceti n of variable jnlets viriable nozzles and veriable conbustors and the elaborate development program leadine to their design.

Barring this complication the only alternative is to boost the ramjet to a liach number close to 3. The pressuro in tive combustion chamber at such a nach number is about thirty (30) tines the ambient pressure. Therefore launching a rarijet at this hirh a Wach number also moans launching it at altitude lest combustion chamber pressures lead to prohibitive structural weight.

To boost a missile of the size reauired to both high velocity and high altitude the on means avallable to date is the linuld propelied, turbo pump rociot. All tio desion problems involvod in the construction of such a booster i. θ. power plant, stabilization, structural and aerodynamic problems ane the same as those that have to be solved for a pure rocket type missile.

In addition to these the ramjet desicner is faced with the assignment of solving the same problems - power plant, structure, stabilization and muidance, aerodynamics - at least oqually difficult.. relating to the ramjet proper.

Of these, contrastine with the rocket the power plant problem involves years of development work and millions of dollars of testing equipment.

The construction of the composite missile will involve the building of two different ty power plants, two fuel systems, two stabilization and guidance systems. The probability of malfunctioning of these items is also doubled.

In short, due to the necessity of a himh altitude hifh velocity boost the effort reauired to produce a long range ramjet is roughly twice that for a rocket missile, both from the standpoint of engineering and the standpoint of constructiona Comparine ranjot performance to the performance of a rocket with glide path, it would appear that the benafits derived from this extre effort are questionablo at best.

PROPOSED NETHOD FOR INPPOVING HIGH ALTITUDE PERPORMANCE OF
 PRESENT RMI 20,000 POTND THRUST ROCKET

EFFFECT OF NOZZIE EXPANSION ON ROCKET TYRUST

 the r^{*} salle pance hy incresin. tite expansinn ratin rf tive rocket noz2las. It turmmosea that this be accoulhshed withr at chameng the design of the present motor.
 the arinast in to 5,000 feet aro g'nve this altitufe exmansion is incomnletg. By increasine the exit diameter, and allowin, more complata exmasian at high altitude, rocket thrust cin bo aporgetably inoresma. Howavin, to rrevent severo trerust lossas at low altitude, an annixler pliae must. be insertect in tioe exit nozzle sr that the excess araa is filled with " solld resistant matarial (nrobakiy grachita) to prayont over expansi:n. At, $\mathrm{En}, 000$ feet, the plug is reinased and the thrust from the greater expansion is provided.

Figure 6 sinws tha thrust incraace with altitude for the jresent nonzle des: and the ain that can boxpected if weater expnnsion is used.

Figure 7 is a schemotic drawins of the neonsaci nozzle extension and olua incurt as related to the present rocket design. Mhe only change is an addition to the basic design.

The followin, table shows tire macent in in thrust by expanding beyond the present exit diameter. The fifuras renresent the net cain fra san level to 520,000 feet altitude (using a riug during the first 20,000 feet).

TABLF

DESIGN	EXIT DIAMETER (INCHES)	PERCENT THRUST GAIN
$\#$ \#I (present)	16.63	0
$\#+2$	20.25	3.1
$\# 3$	22.25	4.5
$\# 4$	24.25	6.0

FIGURF 6 TI
EFFECT OF NUZZLE DESIGN
0 N
RUCKED THRUST

125
-
120
$24.25^{\prime \prime}$ ExIT DIA.

DISCUSSION:

Rocket onaration is to be mintained from sea level to 520,000 feot altitude. Information on pressures at high altitude was obtained
 Whipnle, Betz Et Al, and Warfield. Pressure ratios were then detomined by using chamber pressure at 300 psia and various altitude pressures. Rocket thrust was culculated by the formula:

$$
\begin{aligned}
& F=C_{F} P_{C} \text { art (ref. *) } \\
& \text { where: } F=\text { thrust of rocket } \\
& G_{F}=\text { thrust coofficient } \\
& P_{C}=\text { chamber pressure } \\
& \lambda_{T}=\text { nozale throat area }
\end{aligned}
$$

In each design shown in the above tanle, the throat area is the saine (47.1 so. in.). In Figure 6 tine t.ant survis were terminated
 constant.

The larger exit diameters give hirher thrust values at high altitude at the expense of a ? ow altitude loss. However the use of an

 noz: ie oxit to $5=00$ feet. At this oititude it will be released, leavine the exnari iod nozzlo whin will rive the hishor thriat vaiuas above this point.

Design number 3 is approximately 6 percent below optimum at عo, no feet, ilowaver a grefor n z 1 de dometerw:ll carse an axtornal (anodynume) drag that wlil robanly mone than ofset the thrust min. Abrve 0,000 feet the thmust of a \because firer losion will rumain conetant while ontimum thrust incre:son. Valuos of untimur thrust shove this altitude cannot be found with the available data.

Figure 6 shows thrust values for three possible extensions to
 shows the probable best nozzle dosion for the 1,000 mile missile in its present configuration.

The nozzle extension will not require a redesign of the present moket and ald itg inn halance roliamg. Time extnnsion can be made of erionste (or some ot -r hent rosistart motorial) and attachod to the present nozzle Ifp.
 PROPULSION" Eq. 5.17.

WARHEAD SKIN TEMPERATURES

Figure 8 shows the temperatures anticinated for the warhead slin for the balljstic and silde path fliphts. It can be sean from the curves that the maximum temperature in tine ballistic warhoad occurs shortly before impact. In the glide type warhead the maximum occurs during the first quarter of the glide range. The skin temperature then decreases during the remainder of the flight. The conditions of the glide path are somewhat less severe, lower sikin tomperatures and a lonser hextins period alleviating thernal stresses in tho skin considerably.

Naterials and techniques currently in use are suitable for the design of a warioad sirin for a 1000 mile range ballistic path missile, or a 2000 mile range glide path missile.

The method used to determine the data of Figure 8 is essentially that of Convair Report No. DEVVF $346-17$. This is a step-by-step mothod including the effects of hoatinc, by the boundary layer, dissociation in the boundary layer, radiation by the skin, and the themal capacity of the skin.

| ANALYSIS | CONSOLIDATED VULTEE AIRCRAFT CORPORATION | PAGE | 24 |
| :--- | :---: | :---: | :---: | :---: |
| PREPARED BY | SAR DIEgO DIVISION | REPORT NO $2 P-48-350$ | |
| CHECKED BY | SECRET | MODEL | DATE |

SECRET

PAGE REPORT NO $7,-\frac{1}{4} 8-3500$ MODEL DATE
A. General: the 6000 pound warhead 1000 mile ballistic missile described in CVAC Report No. ZP-4E-35003 may be considered a first stop toward the ultimate development of a glide type warhead missile of roughly double the range.

This possibility for future development was lightly touched upon In Report $2 P-48-35003$ on pases 2 and 31. Some results of further preliminary study on this problem can now be presented.

Time has nit permitted an independent computation of skin friction drags at high Mach numbers during the glide. These computations are very elaborate. Therefore the performance analysis shown is based on the use of skin friction coefficients as determined by RAND.

The establishment of an optimum configuration for the glide type missile was found to be considerably more difficult than for the ballistic type. The warhead size and weight, maximum L / D, altitude and velocity at burnout, warhead skin temperatures are all interdependent parameters. By a process of compromise, a first approximotion for on optimum configuration, shown on pages 29 and 30 was arrived at. This configuration can doubtlessly be improved by further study.

B. Description:

Overall Length Body Diameter
Gross weight Warhead Fabricated Wt Fuel Wt
Take off Thrust Range (Approx.)

> 83.5 ft 6.75 ft 74775 lb 6000 lb 6635 lb 62140 lb 108000 lb 2000 st M土 les

The power plant is the same as that of the proposed ballistic missile including the method of jettisoning the booster stage.

Inasmuch as guidance is necessary during the glide, all intelligence equipment is located in the warhead.

Aluminum construction is used for the alcohol tank section, aft body and empennage. The latter is jettisoned at the end of the booster stage.

The gilding warhead structure separates at burnout and is built ont of stainless steel due to temperature considerations. The aft part of this structure is the oxygen tank. The shape of the warhead hoot is aerodynamically stable at hash lack numbers so that no tail surfaces are rocuired during the glide. Roll stabilization is proviced by a pair of rollerons located at the base of the nose cone. During the glide trim in pitch and yaw is controlled by a seiveling (canard type) nose

C. Weight Statement:

CROSS WETGHT STVMARY

6000 LB GLIDE TYPE WARYEAD

STAGE I
STAGE II

Gross We inht
We:cht ErDty
Psyload
6000
Body aft of separution Fins
7.99

100
3197
715215
349910
1475423
265
830
989
945
215
910
423

1500000
6000

Power vinnt
Equipment Nose
Equipment tai?
Body fwd of separation
Fuel
$\mathrm{H}_{2} \mathrm{O}_{2}$
Lox
Alcohol
Wt. at ond of lst stage
(62140) (550)

1243	936	1165000	151	949	143000
33832	507	17200000	4119	670	2760000
27065	811	22000000	3296	376	2880000
60894					
20201	610	12282560			

Wt: at end of 2nd stase 9926

3963926560
Warhead wefght 8190-290 2368400

（2363400）

咅	0 0 0	 サ氏 COMWOO नलिन सेख心夊	$\begin{aligned} & 6 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & \hline \end{aligned}$	$\begin{array}{lllll} 1 & \infty & 0 & 0 \\ i & 0 & 12 & 0 \\ 1 & 0 & 0 & 0 \end{array}$	$\begin{aligned} & 0 \\ & \underset{0}{1} \end{aligned}$	$: \begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { F } \\ & 0 \\ & 0 . \end{aligned}$	10 18 0	$\stackrel{\text { セH }}{\text { H }}$	示1
	$\begin{aligned} & \hat{\sigma} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \underset{\sigma}{2} \end{aligned}$		$\begin{aligned} & 5 \\ & \text { m } \\ & 0 \\ & \hline \end{aligned}$	$\underset{\sim}{i}$	$\begin{array}{llll} 1 \\ 1 & 0 & 0 & 0 \\ 1 \sim 0 & 0 & 0 \\ 1 / r \end{array}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{*} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{O} \\ & \stackrel{-1}{2} \end{aligned}$		\bar{O}	$\underset{\sim}{c}!$

（290）
 （915）

$\begin{array}{lllll}M & 2 & \infty & 0 & 0 \\ \text { H } & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}$
Power PIant
（935） 941
916 （935） 941 (941) H．
H
H
 （3197） (1225) $\begin{array}{lll}1 & & \\ \infty & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ (725) $\begin{array}{ll}3 & 6 \\ C & 4 \\ 0 & 4 \\ 0 & 4\end{array}$ (210) 100
110 (160)

$$
\begin{aligned}
& \partial \Lambda \tau^{B} \Lambda \text { doud } \\
& \theta \Lambda \tau^{8} \Lambda \text { doud }
\end{aligned}
$$

ITEM

GIIde Warhoad

$$
\begin{aligned}
& \text { Nose Cone } \\
& \text { Wariead } \\
& \text { Fixed EQ + Guid } \\
& \text { Trimming Dev. } \\
& \text { Slin } \\
& \text { Residual Fuel } \\
& \text { Fittines } \\
& \text { Tenk Finds }
\end{aligned}
$$

 80000 Mount 28000 Mount

Valves and Resulators 00008
00088
Lines and Fittings

28000

Press Supply
Heat Exchanger - OxyEen Helium Tank Control Operation Hellum

$$
\begin{aligned}
& \text { (2) } \mathrm{H}_{2} \mathrm{O}_{2} \text { Tank - Larce } \\
& \text { (1) } \mathrm{H}_{2} \mathrm{O}_{2} \text { Tank - Smail }
\end{aligned}
$$

Residual Fuel

28000

Fixed Equivment
(6) Valves
(6) Response Units
8000 Swivel Cont.
80000 Swivel Cont.
Staging Controls
Warhead Eject.
Aft Bocty
Aft Bulkhoad
Fwd Bulkheac
Engine Struet.
\square

FE－D ASSEMGLY DOINTS

SU5ムッこと
B00：－3 anct 40

SECRST

1 PCEET

Roport $110.1 \quad 28-48-3500 \%$
 Page: 29

D. Stability and Control: The flicio type rocrot missilo is stabilized by four (4) stabilizing surfaces (fins) durin the booster stare portion of the flioht. only very small fins (liz square feet per panel) are recuired to strbilize the missile durine the booster stare and no fins are remurad during the final stare of burning. This is a resilt of the excelient stabilizing characteristics of the body along and the forward pnsitinn of the center of gravity due to tie location of the warhend near the nose.

During powered flicht the missile is cuntrolled by the use of swiveling rockets in the same manner as noted on page i2 of roference 1.

The glide configuration will be controlled in pitch and yaw by a swiveling (canard tylue) nose. This will maintain the nocessnry angle of attack for maximum L / D and keep the missile on the correct azimuth. This a.pears to be the best typo of control in pitch and yaw, however, additionsl research will be required on this type of control to ascertain the offectivoness of the nose swiveling and its offect on aorodimamic characteristics of the rest of the body at supersonic speeds. It is possible that movable surfaces (fins) may be reauired to maintain the glido colfifuration at an anglo of attack.

In order to control the glide configuration in roll, a set of roll fllppers were placed just forward of the warhead (see page 29). Sinco no large disturbances in roll aro anticipatod tho resultant roll flippers are comespondingly small.

Lift and Conter of Pressure of Poworad "issile Configuratirn:

Body Alone: The Iff and moment characteristics for the body reference 2 for the low wach numbers $(M=1.25$ to $M=5$) and by use of Newtonian flow characte istics reforence 3) for in 7 10.0. The resilts obtained using the method shown in reforence 2 have shown good acreoment with forman wind tunnel npessure distribution tiost on the $V-2$ and static stability wind tunnel tests on the vX-774 at Aberdeon, at low anylos of attack ($\alpha<10^{\circ}$). This thoory homever, breaks down in the vicinity of $M=5.0$ for normal nose ani, les. The next lorical step tion anvers to be Newtonian flow cramacteristics (reference 3) wifch appert to check tho exact ras dymanic theory (reference 3) in the region of $M=10.0$ to 20.0 .

Since it is believad that the ahove two theorieshold annreciably well for their respective Nach nuibers rerins amu since it is further belleved that no discontinuity $w i l l$ occur in the intermediate region (1.日., $M=5.0$ to $M=10.0$), the two cumes were faired into each other. A piot of normal force and centor of pressure characteristios ale presented on page 33 for tho cmplete powered configuration.

ANALYSIS
PREPARED BY
CMECKED BY

CONSOLIDATED VULTEE AIRCRAFT CORPORATION
San Diego
SECRET

PAGE $\because ?$ REPORT NOZZP-48-35001 MODEL
DATE

Pin Alone: The lift and moment characteristics of the fins were obtained from the method outlined in reference 2 for all liach number reginns in which fins were used (M 7). Those results are presented in page

Complete Configuraticn: Given the body alone and fin alone lift and moment characteristics above the conter of pressure of the complete powared configuratins are calculated by

$$
\frac{X}{X}=\frac{\left.\frac{d C N_{B}(I-K B}{X}\right)+2 \frac{d C N F}{d \alpha} \frac{X F}{R}}{\frac{d C N B}{d \alpha}+2 \frac{d C}{d \alpha}}
$$

The above equation is used only for the boostor stage (Stage I) where fins are necessary. The final stare (stare II) is stable without fing and thus only body alone characteristics wore used.

A plot of the center of pressure and center of gravity versus Mach number of the complete powored coniliguration for Stages I and II is presented on page. -

Ifft and Center of Pressure of Glide Configuration: The Elide configuration has a conloal nose (nalf nose ancle $=5.0^{\circ}$) and a cylindrical afterbody (see page 29) of E. 7 calibers.

The lift and moment characteristics wero obtained by the same method previcusly outlined for tho bouy alone of the powered flicht configuration. However, tho rosults wore obtainod fr mifher angle of attack considerations for tie glide configurati-n due primarily to the angles of a tack reauired to maintain maximum Lift/Drag in the glide path.

A plot of $\frac{d C N}{d}$ and X_{G} versus Mach number for the glide configuration is presented on page 35.

CONSOLमDATED VULTEE AIRCRAFT CORPORATION Page 33 San Diego, California

COISOLID: IED VULTEE AIRCRAFP CORPORATION PAge San Diego, California

$$
\frac{\text { ROCKET GLIDE TYDE MISSHL }}{(6000 \text { \&B WARHEAD- } 2000 \mathrm{ML})}
$$

$$
\text { VARIATION OF } x_{a} / l \text { \& dCNa/dac WITH }
$$

MACH NUMBER ALONG GUDE DATH

CONSOLIDREDD VULTREE ATPCRAFT CORPORATION Page

San Diego

DIVISION
SECRET
E. Performance: The 6000 pound warhead, 2000 mile glide type rocket missile is powered by five (5) 20,000 pound thrust rocket motors and four (4) 2000 pound thrust rocket motors. The missile operates in two stages and is unique in the fact that the same fuel tanks are used in both stages, thus saving much airframe weight. At the end of the booster stare, the four (4) large outside rocket motors are dropped along with related accessories and the entire fin and an appreciable amount of skin and structure. The missile then continues on to the end of burring powered by one 20,000 pound thrust rocket motor and four (4) 2000 pound thrust rocket motors.

At the end of burring of the final stage, the alcohol tank and remaining rocket motors are dropped and thus the remainder of the missile becomes the glide configuration (see page 29).

Powered Flight: A series of step-by-step calculations were conducted in order to obtain the correct altitude and velocity alone a horizontal trajectory at the end of burning such that the glide configuration would be in equilibrium at the maximum L/D at this point.

The missile was launched vertically for 20 seconds and then assumed an ankle of 77° with respect to the horizontal. The remainder of the flight was along a zero angle of attack path.

The step-by-step calculations were based on the following relatirnships which are'based on the assumption of a zero anele of attack flight path.

$$
\begin{aligned}
& \frac{d V}{d t}=g\left[\sin \gamma+\frac{T-D}{W}\right] \\
& \frac{d \gamma}{d t}=-\frac{g \cos \gamma}{V} \\
& \frac{d h}{d t}=V \sin \gamma \\
& \frac{d R_{G}}{d t}=V \cos \gamma
\end{aligned}
$$

Where:

$$
\begin{aligned}
& T=\text { thrust for a Given altitude } \\
& D=D r a g=q S_{B} C_{D}
\end{aligned}
$$

$$
\begin{aligned}
& W=\text { Weight at a iven time } \\
& \gamma=\text { Flight path angle with respect to the horizontal } \\
& \text { plane at launching site } \\
& V=\text { Altitude at a given time } \\
& R_{G}=\text { Range at a given time } \\
& t=\text { Time }
\end{aligned}
$$

The variation of thrust with altitude was calculated by increasing the basic sea level thrust of 10 , 000 pounds for Stage I and $2 \mathbb{E}, 000$ nounds for stage II respectively by the percentage indicated in page 18.

The drag analysis used for calculating wave drag and base drag was based on the method outlined in reference 2 for all Mach numbers. These values are identical to those prosanted in reference 3. The skin friction drag was determined by reference 2 up to $M=2.0$ and faired into the vilues obtained from reference 3 at $M=7.0$. Sufficient time did not permit a complete analysis of tho mothod of reference 3 for calculating skin friction and thus the values used at high mach numbers were taken directly from the RAND report (reference 3) and adjusted to the present qlide missile. A plot of the total drar coefricient versus liach nuaber for the complete powered configurntirn is prosented on page 41 ind for the glide configuration on page 42 .

Gline Path Flight: The range of the elide path portion of the flight was calculated by the following relationships (see reforence 4).

$$
\begin{align*}
g & =\frac{v^{2}}{R}+g \frac{L}{W} \tag{1}\\
R_{g l 1 d} & =\frac{1}{2} \int_{U_{E_{1}}}^{U_{E_{I}}} \frac{L}{D} \frac{1}{1-\frac{V^{2}}{g R}} d U_{E} \tag{2}
\end{align*}
$$

Where: $\quad U_{E_{1}}=V_{1}^{2}+2 g h_{1}=$ Initial Energy

$$
U_{\Sigma_{f}}=v_{p}^{2}+2 g h_{f}=\text { Final Energy }
$$

$$
L / D=11 f t / d r a g
$$

PAGE 38 REPORT NO ZP-4E-3500 MODEL
DATE

$$
\begin{aligned}
& W=\text { Weight at a iven time } \\
& \gamma=\text { Flight path angle with respect to the horizontal } \\
& \text { plane at launching site } \\
& V=\text { Altitude at a given time } \\
& R_{G}=\text { Range at a given time } \\
& t=\text { Time }
\end{aligned}
$$

The variation of thrust with altitude was calculated by increasing the basic sea level thrust of $10\{, 000$ pounds for stage I and $2 \varepsilon, 000$ nounds for Stage II respectively by the percentace indicated in page 18.

The drac analysis used for calculating wave draf and base drag was based on tho method outlined in reference 2 for all Mach numbers. These values are identical to those prossnted in reference 3. The skin friction drag was determined by reference 2 up to $M=2.0$ and falred into the values obtained from reference 3 at $M=7.0$. Sufficient time did n permit a complete analysis of tho mothod of reference 3 fcr calculating skin friction and thus the values used at high mach numbers were taken directly from the RAND report (reference 3) and adjusted to the present alide missile. A plot of the total drar coefficient versus liach nunjer for the complete powered configurntirn is prosented on page 41 ind for the glide configuration on pagol42.

Glice Path Flicht: The range of the Elide path portion of the flight was calculated by the following relationships (see referonco 4).

$$
\begin{align*}
g & =\frac{v^{2}}{R}+g \frac{L}{W} \tag{1}\\
R_{g l i d \theta} & =\frac{1}{2} \int_{\mathbb{E}_{1}}^{U_{E_{f}}} \frac{L}{D} \frac{1}{1-\frac{V^{2}}{g R}} d U_{E} \tag{2}
\end{align*}
$$

Where: $U_{E_{1}}=V_{1}^{2}+2 g h_{1}=$ Initial Energy

$$
U_{E_{f}}=V_{f}^{2}+2 g h_{f}=\text { Final Energy }
$$

$$
L / D=11 f t / d r a g
$$

$$
\begin{aligned}
R & =\text { radius of earth } \\
G & =\text { gravitational acceleration } \\
W & =\text { weight } \\
V & =\text { velocity at any time } \\
V_{1} & =\text { velocity at start of glide } \\
V_{t} & =\text { velocity at end of glide } \\
R_{g l i d e} & =\text { range of glide path }
\end{aligned}
$$

From enuation (l) the renuired altitude may be determined to attain equilibrium at the anele of attack for maximum L / D using a given weight and velocity at the end of burring.

Equation (2), in turn, will give the rance traversed during the glide path portion of the flight.

A plot of the glide path portion of the flight calculated by this method is presented on page 23.

The values of I / D used in the glide path calculations were obtanned by

$$
L / D=\frac{d_{L} \alpha}{C_{D 0}+\frac{d C_{\mathbb{N}}}{d \alpha} \alpha^{2}}
$$

Where:

$$
\begin{aligned}
C_{L} & =C_{N} \cos \alpha \\
\alpha & =\text { angle of attack } \\
C_{D_{0}} & =\text { drag at zero angle of attack }
\end{aligned}
$$

The angle of attack chosen for L / D up to $M=7.0$ resulted in maximum values of L / D. However, above $M=7.0$ values of L / D slightly lower than L / D (maximum) wore used in order to operate at a richer angle of attack and therefore higher altitude and lower skin temperatures.

A plot of L / D versus Mach number for the ride flight is prosented on page 45 .

The reentry neath is considered to be a ballistic path with the glide cafiguration assuming zero angle of attack.

PEPTORMANCE SITMAMY

Booster Stage I Final Stago II

Weight Full
Woight mpty Weight of Fuel (total) Thrust at S.L. 108,000 lbs
Specific Impulso
Fuel Consumption Mass Ratio Initial

Acceleration Time of

Burning

$$
1.445
$$

$$
106 \mathrm{sec}
$$

$$
\begin{aligned}
& \begin{array}{r}
74,775 \mathrm{lbs} \\
20,201 \mathrm{lbs} \\
\text { (total) } 15!574 \mathrm{lbs} \\
10 \mathrm{E}, 000 \mathrm{lbs}
\end{array} \\
& 210 \text { sec } \\
& 514 \text { \#/sec } \\
& 3.695
\end{aligned}
$$

17.492 1 bs
9.926 1bs

566 Ibs 000 Ibs

240 sec 133.3 \#/rsec
1.762
1.83

568 sec

Performance at End Porformance at End of Booster Stage of Final Stape

Velocity Along Flight Path S_{Z} - Altitude
Sx - Range Flight Path Angle M1ssile Attitude

$$
\begin{array}{cr}
7049 \mathrm{ft} / \mathrm{sec} & 11,29 \\
87,000 \mathrm{ft} & 115,00 \\
190,000 \mathrm{ft} & 690,00 \\
12.2^{0} & 0 \\
0 & 0
\end{array}
$$

Performance at End of Glide
Altitude $=52,000 \mathrm{ft}$
Velocity $=2,000 \mathrm{ft} / \mathrm{sec}$
Range $=2,005$ miles

$$
\frac{\text { ROCK. GLIDE TYPE MISSILE }}{(6000 \text { LB. WARUEAD-2000 MI) }}
$$

San Diego

F. Guidance: The methods of mid-course guidance applicable for a glide path trajectory were presented on page 24 of reference 1. In addition to guidance for the glide path the incorpore ation of a self contained system of angle of attack control is deemed desirable. Such a system would allow the programming of angle of attack throughout the flight thus permitting (1) flight at best lift to drag ratios at all times, or (2) predetemined control of the filght altitude within wide ranges.

The angle of attack programming signal can come from any one of three sources or combinations of these sources, (1) elapsed time, (2) altitude by positive altimiter, or (3) Mach meter.

It is possible that some disturbance might start the configuration on a skip path. If the angle of attack signal originates from either of the last two sources such a skip would be damped out.

G. COST ESTIMATE

The following Cost Estimates for the 6,000-pound warhead rocket missile are based on the same cost analysis presented on Page 2.

COST ESSIMATE

6,000 Pound Wamhoad Pockot Missile

	Unit Cost	$\begin{aligned} & \text { Ballistic Warhead } \\ & \text { I.000 Mile Range } \\ & \text { Wt. Cost } \end{aligned}$		$\frac{\text { Glide }}{\text { Wt. }}$	$\frac{\frac{\text { Narhead }}{11 \theta \text { Rang }}}{\operatorname{Cost}}$
Aipframe	\$ 27.00	3,134	\$84.500	4,085	\$110,000
Power Plant	80.00	2,110	169,000	2,110	169,000
Guidance	100.00	300	30,000	. 440	44,000
Warkerd		6,000		6,000	
Total Wt Empty		11.514	\$283.200	12.635	\$323,000
oxygen	. 04	33.052	1,310	33.832	1,310
Alcohol	.10	27,065	2,707	27,065	2,707
$\mathrm{H}_{2} \mathrm{O}_{2}$. 16	1,243	200	1,243	200
Total Fuel		62,140	\$ 4,217	62, 3.40	\$ 4,217
Total	----	73.684	\$287.717	74,775	\$327,217

REFERENCES

1. CVAC Report No. ZP-48-35003, "Proposed Development Program on Rocket Type Missile".
2. CVAC Report No. ZA-6002-002, "Final Aerodynamics Report on $\mathrm{MX}-774$ Single Stage Test Vehicle".
3. Rand Report No. RA-15065, Long-Range Surface-to-Surface Rocket Vehicles P_{r} eliminary Investigations and Results. Aerodynamics
4. Rand Report No. RA-15063, Long-Range Surface-to-Surface Rocket Vehicles Pfeliminary Investigations and Rockets Filght Meohanics.
